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a b s t r a c t

The film-diffusion and the intraparticle-diffusion models are widely used to analyze the mechanism of
adsorption. The plots of these models often have a multi-linear nature, and in general, the graphical
method is employed to analyze the data in which the linear segments are determined visually. This
eywords:
ntraparticle-diffusion
ilm diffusion
dsorption
iecewise linear regression

method suffers from subjectivity and therefore its estimated diffusion parameters are not very reliable. An
alternative statistical method, piecewise linear regression (PLR) is presented and applied to experimental
data. The results demonstrate that the use of PLR is practical and leads to diffusion estimates that may be
quite different from the graphical method. PLR also determined the exact time periods for each diffusion
regime, which opens new possibilities for analyzing and understanding the mechanism of diffusion. In
order to encourage the testing and application of PLR, an easy to use Microsoft® ExcelTM spreadsheet is
echanism made available.

. Introduction

For practical applications of adsorption such as process design
nd control, it is important to model the adsorption rate and under-
tand the dynamic behavior of the system. It is generally accepted
hat the adsorption dynamics consists of three consecutive steps
1]:

Transport of adsorbate molecules from the bulk solution to the
adsorbent external surface through the boundary layer diffusion.
Diffusion of the adsorbate from the external surface into the pores
of the adsorbent.
Adsorption of the adsorbate on the active sites on the internal
surface of the pores.

The last step, adsorption, is usually very rapid in comparison to
he first two steps, and therefore, the overall rate of adsorption is
ontrolled by the first or the second step, whichever is slower, or a
ombination of both. Many studies have shown that the boundary
ayer diffusion is the rate controlling step in systems character-

zed by dilute concentrations of adsorbate, poor mixing, and small
article size of adsorbent [2,3]. Whereas the intraparticle-diffusion
ontrols the rate of adsorption in systems characterized by high
oncentrations of adsorbate, vigorous mixing, and large particle
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size of adsorbent. Also, it has been noticed in many systems that
film diffusion (external mass transfer) is dominant at the begin-
ning of adsorption during the initial adsorbate uptake, and then
the adsorption rate becomes controlled by intraparticle-diffusion
after the adsorbent’s external surface becomes loaded with the
adsorbate [1,2].

Many mechanistic models have been suggested to describe the
adsorption kinetics. Two-resistance models, such as the film-solid
model [4], the film-pore model [5], and the branched pore model
[6], give detailed analysis of the adsorption dynamics. However,
these models are presented as partial differential equations and
their solution needs dedicated computer programs and extensive
computer time. Therefore, it is impractical to use these models in
industrial-plant simulations because in industry it is preferred to
have more simple relations that can be solved quickly and easily.
Even in the area of research, most researchers prefer to use simple
lumped kinetic models to analyze their experimental results. At the
present time, Boyd’s [7] and Webber’s [8] intraparticle-diffusion
models are the two most widely used models for studying the
mechanism of adsorption.

The film-diffusion model of Boyd is a single-resistance model
that assumes that the main resistance to diffusion is in the boundary
layer surrounding the adsorbent particle, this model is expressed
as [7]:
F(t) = 1 −
(

6
�2

) ∞∑
n=1

(
1
n2

)
exp(−n2Bt) (1)
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Nomenclature

a1 to an the intercepts of the linear segments
A, B, C, D, . . . parameters of the general piecewise linear

model
AIC Akaike’s Information Criterion
b1 to bn slopes of the linear segments
Bt a function of F(t)
Di the effective diffusion coefficient (cm2/s)
DF degrees of freedom
F(t) the fractional attainment of equilibrium
J1 to Jn the breakpoints
ki intraparticle-diffusion parameter (mg/g min0.5)
N number of experimental data points
Nn number of data points in the nth linear segment
Np number of parameters in the model
P P value for hypothesis testing, it measures the prob-

ability of observing the sample data assuming the
null hypothesis was true the in fact true

PA Akaike’s weight, the probability that the model hav-
ing the lower AIC is better than the alternative model

q the dye uptake at time t (mg/g)
q1 the dye uptake at the at the first breakpoint (mg/g)
qe the dye uptake at equilibrium (mg/g)
r the radius of the adsorbent particle (cm)
R2 coefficient of determination
SX the standard error of X
SYX the standard error of estimating Y
SSE the sum of squared deviations
t time (s)
t1 to tn the time corresponding to the nth breakpoint
Tconf the value of Student’s t-distribution for a confidence

% probability level,
X the independent variable
Y the dependent variable
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� the absolute value of the difference in AIC between
the two models

here F(t) is the fractional attainment of equilibrium, at different
imes, t, and Bt is a function of F(t):

(t) = q

qe
(2)

here q and qe are the dye uptake (mg/g) at time t and at equilib-
ium, respectively.

By applying the Fourier transform and then integration,
eichenberg [9] managed to obtain the following approximations:

or F(t) values > 0.85, Bt = 0.4977 − ln(1 − F(t)) (3a)

nd

or F(t) values < 0.85, Bt =
(

√
�−
√

�−
(

�2F(t)
3

))2

(3b)

, can be used to calculate the effective diffusion coefficient, Di
cm2/s) from the equation:

= �2Di

r2
(4)

here r is the radius of the adsorbent particle assuming spherical

hape.

Eqs. (1)–(4) can be used in predicting the mechanistic steps
nvolved in the adsorption process, i.e. whether the rate of removal
f the dye takes place via particle diffusion or film-diffusion mech-
nism. This is done by plotting Bt against time, if the plot is linear
neering Journal 163 (2010) 256–263 257

and passes through the origin then intraparticle-diffusion controls
the rate of mass transfer. If the plot is nonlinear or linear but does
not pass through the origin, then it is concluded that film-diffusion
or chemical reaction control the adsorption rate [7,9,10].

On the other hand, Webber’s intraparticle-diffusion model is
also a single-resistance model that was derived from Fick’s second
law of diffusion. This model assumes that:

(i) the external resistance to mass transfer (film diffusion) is not
significant or only significant for a very short period at the
beginning of diffusion;

(ii) the direction of diffusion is radial and the concentration does
not change with angular position;

(iii) the intraparticle diffusivity is constant and does not change
with neither time nor with position.

The intraparticle-diffusion parameter, ki (mg/g min0.5) is
defined by the following equation:

q = kit
0.5 (5)

where q is the amount adsorbed (mg/g) at time t.
It can be seen from Eq. (5) that if intraparticle-diffusion is the

rate limiting step, then a plot of q versus t0.5 will give a straight line
with a slope that equals ki and an intercept equal to zero.

In spite of their apparent simplicity, the application of both
the models of Boyd and Webber often suffer from uncertainties
caused by the multi-linear nature of their plots. This multi-linearity
is usually explained as follows: film-diffusion controls the rate of
adsorption only in the initial time period, and therefore the plot of
Bt versus t shows a curved line in the beginning of adsorption, even-
tually intraparticle-diffusion takes control of the overall adsorption
rate, thus giving one or more new straight lines. It is up to the
researcher to examine the plot and choose which points represent
the first and second (and subsequent) segments. Similarly, the plot
of q versus t0.5 may show several linear segments, it has been pro-
posed that the linear segments represent intraparticle-diffusion in
pores of progressively smaller sizes [11], and again, it is up to the
researcher to visually examine the plot and decide how many lin-
ear segments exist then choose the points to divide the plot into
these linear segments.

The uncertainty in determining the linear segments leads to
uncertainties in calculating their slopes and intercepts, and con-
sequently, uncertainties in estimating the diffusion coefficients.
Moreover, valuable results and conclusions are lost because a
researcher can not accurately determine the time of transition from
film to intraparticle-diffusion, and also the transitions between
the consecutive intraparticle-diffusion regimes. If these transition
times are accurately known, attempts can be done to correlate tran-
sition times to process variables such as agitation, particle size, pore
size, concentration, q, etc.

The use of a statistical method to determine the beginning and
end of each linear segment, and also the number of linear segments,
would avoid the subjective decisions left to the researcher in the
currently used graphical approach.

The objectives of this article are to present the method of
piecewise linear regression as a tool for analyzing experimental
adsorption dynamics results. Also, in order to facilitate the testing of
this method, an easy to use Microsoft® ExcelTM worksheet is made

available that is capable of performing piecewise linear regression
and applying statistical tests to the regression results. The results of
this study would help researchers to get more accurate predictions
of diffusion coefficients when applying the film-diffusion and the
intraparticle-diffusion models to their experimental data.



2 l Engi

2

2

w
s
f
s
r
p
p

e

w
a

e

w
l

w
e

Y

a
s
o
n

f

T
p

Y

I
N
e
p
d

2

m
s
o

S

58 G.F. Malash, M.I. El-Khaiary / Chemica

. Theory and calculations

.1. Piecewise linear regression

Switching regression is a general class in statistical analysis
hereby the independent variable, X, is segmented (divided into

egments according to it’s value) and the regression analysis is per-
ormed separately for these segments. The boundaries between the
egments are called breakpoints. If it is required that the resulting
egression equations does not show a discontinuity at the break-
oints, then this is a special case of switching regression, called
iecewise regression.

Generally, the common equation of piecewise regression is
xpressed as [12]:

Y = f1(X), X ≤ J1
Y = f2(X), J1 ≥ X ≥ J2
...
Y = fn(X), X ≥ Jn

(6)

here Y is the dependent variable, X is the independent variable,
nd J1 to Jn are the breakpoints.

In the special case where all segments are linear, the common
quation becomes:

Y = a1 + b1X, X ≤ J1
Y = a2 + b2X, J2 ≥ X ≥ J1
...
Y = an + bnX, X ≥ Jn

(7)

here a1 to an and b1 to bn are the intercepts and slopes of the
inear segments, respectively.

Eq. (7) can be implemented in most nonlinear regression soft-
are. For example, in the case of one breakpoint, the common

quation can be written as:

= A + BX + C(X − D) SIGN(X − D) (8)

nd the values of A, B, C, and D are estimated by nonlinear regres-
ion. The Microsoft® ExcelTM “SIGN” function determines the sign
f a number then returns 1 if the number is positive, zero if the
umber is 0, and −1 if the number is negative.

The parameters of the common equation are then calculated as
ollows [13]:

J1 = D, a1 = A + CD, a2 = A − CD, b1 = B − C,

b2 = B + C (9)

he formula of Eq. (8) can be extended to any number of break-
oints:

= A + BX + C(X − D) SIGN(X − D) + E(X − F) SIGN(X − F) + · · ·(10)

t can be seen from Eqs. (8) and (10) that the number of parameters,
p, estimated by nonlinear regression is double the number of lin-
ar segments. Therefore, with a fixed number of experimental data
oints, N, the degrees of freedom of the common equation (N − Np)
iminishes as the number of segments increase.

.2. Nonlinear regression

Nonlinear regression estimates the model’s parameters by the
ethod of least squares. This is done by minimizing the sum of

quared deviations, SSE, by numerical optimization techniques. The

bjective function for minimization is:

SE =
N∑

i=1

(Yexp − Yest)
2 (11)
neering Journal 163 (2010) 256–263

and the optimization routine searches for the set of parameter val-
ues that produce the smallest value of SSE. In order to do so, the
spreadsheet presented here needs initial estimates of the param-
eters, and then it applies numerical optimization to minimize SSE.
As a numerical procedure, the optimization routine keeps chang-
ing the parameter values until convergence is achieved. It should
be noted that convergence may occur at a local minimum (not
the global minimum), and therefore, it is necessary to repeat the
nonlinear regression several times with different initial estimates
of the parameters. From these repetitions, the global minimum is
identified as the one having the smallest SSE. It was observed dur-
ing testing the present spreadsheet that the initial estimates of the
breakpoints have a strong effect on the final parameter estimates,
while initial estimates of the other parameters had very little effect.
In other words, poor initial estimates of the break points usually
lead to convergence at local minima. Therefore, it is recommended
to inspect the plot visually before regression to obtain reasonable
initial estimates of the breakpoints.

2.3. Goodness of fit and parameter uncertainties

After finishing the nonlinear regression, the spreadsheet divides
the data points into groups corresponding to the linear segments.
For each linear segment, the coefficient of determination, R2, is cal-
culated by the built-in ExcelTM function RSQ(Y values, X values).
Also, the confidence limits for parameter estimates are calculated
to asses their uncertainties. The confidence limits of the intercept
of the nth line are calculated by [14]:

an ± (Tconf ,Nn−2)SYX

√
1(

Nn −
∑

X
)2

/
∑

X2
(12)

where an is the intercept of nth linear segment, Tconf is the value of
Student’s t-distribution for a confidence % probability level, Nn is the
number of data points in the nth linear segment, SX is the standard
error of X, and SYX is the standard error of estimating Y.

Similarly, the confidence limits of the slope of the nth line are
calculated by [14]:

bn ± (Tconf ,Nn−2)
SYX

SX

√
Nn − 1

(13)

where bn is the slope of nth linear segment.

2.4. Choosing the number of segments

Many statistical methods have been suggested to detect the
number and locations of breakpoints. These methods include the
use of Bayesian information criterion [15], likelihood-ratio test [16],
and sequential comparison of confidence intervals [17]. Not only do
these methods require extensive computations, but they also take
the decision completely out of the hands of the researcher. This is
sometimes a disadvantage due to the non-ideality of experimental
adsorption results; the data points may be taken at uneven time
intervals leaving blank periods, and also the experimental error in
influential points may cause large bias in the estimates. Therefore,
the method suggested here and demonstrated in the worksheet still
allows the researcher to perform the conventional graphical analy-
sis, but also ads statistical tools to help in reaching a decision about
the number and location of breakpoints on a sound statistical basis.

The spreadsheet performs piecewise linear regression calcula-
tions for the cases of two, three, and four linear segments. It is

suggested that the researcher examines the estimates of regres-
sion in the three cases, graphically assesses the segmented line
produced, and check the confidence intervals of linear segments.
If all estimates make sense and are also statistically accepted, then
the next step is to compare models for the goodness of fit.
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Increasing the number of linear segments increases the num-
er of regression parameters, leading to a decrease in the degrees
f freedom, and almost universally decreases SSE. Therefore, the
oodness of fit cannot be based solely on SSE but must also include a
enalty for the decrease in the degrees of freedom. Two well known
tatistical methods used in the comparison of models are based on
he extra sum of squares method, these methods are the F test and
kaike’s Information Criterion (AIC) [16]. The F test was derived

rom hypothesis testing and the analysis of variance (ANOVA). It
hould be emphasized that the F test is only valid for comparing
ested models, it is fundamentally wrong to use it in comparing
on-nested models. It involves analysis of the difference between
he SSE of the two models being compared, taking into account the
umber of data points, N and the number of parameters, Np, in each
odel. This information is used to calculate F ratio and P value as

ollows [17]:

= (SSE1 − SSE2)/SSE2

(DF1 − DF2)/DF2
(14)

here SSE1 and SSE2 are the sum of squared deviations for the
impler and more complex model (the model that has more param-
ters), consecutively, while DF1 and DF2 are the degrees of freedom
f the two models. After the F ratio is calculated, the P value is
btained from the F distribution using the Microsoft® ExcelTM func-
ion FDIST (F ratio, DF1, DF2). The P value answers this question: If
he simpler model was in fact correct, what is the probability of
bserving a random sample of data where the difference between
SE1 and SSE2 is as large (or larger) than obtained in this exper-
ment? If the calculated P value is less than the chosen level of
ignificance (usually 0.05) then it can be concluded that the com-
lex model fits the data significantly better than the simpler model.
therwise, the complex model is rejected because there is no sta-

istical evidence that it fits the data better than the simpler model.
t should be emphasized that the F test does not decide which

odel is correct; it just expresses the sufficiency of evidence for
ccepting/rejection of the simpler model.

AIC is based on information theory and maximum likelihood
heory, and as such, it has an approach that is completely different
rom the F test and does not involve hypothesis testing. Rather,
his method determines which model is more likely to be correct
nd quantifies how much more likely. For a small sample size, the
orrected AIC is calculated for each model from the equation below
17]:

IC = N ln
(

SSE

N

)
+ 2Np + 2Np(Np + 1)

N − Np − 1
(15)

he value of AIC can be positive or negative and its sign has no sig-
ificance because it may change if the units expressing the data are
hanged, what really matters is the difference in AIC values between
wo models. The lower the AIC value (on a scale from +∞ to −∞)
he better. The probability that the model having the lower AIC is
etter than the alternative model is calculated by [17]:

A = e0.5�

1 + e0.5�
(16)

here � is the absolute value of the difference in AIC between the
wo models. This probability is also called Akaike’s weight. Another
ay of comparing AIC values is the Evidence Ratio which is defined

y [17]:
vidence Ratio = 1
e−0.5�

(17)

nd it’s numerical value means that the model with lower AIC is
/e−0.5� times more likely to be correct than the alternative model.
neering Journal 163 (2010) 256–263 259

2.5. Spreadsheet validation

As written, the spreadsheet can accommodate up to 40 data
points. The nonlinear regression is performed using the Solver
Add-In function to Microsoft® ExcelTM. By selecting the Options
button in the Solver dialogue box, it is possible to modify the
maximum number of iterations, maximum run time, percent tol-
erance, precision, and convergence criteria. The default settings
were modified in the present spreadsheet as follows: number of
iterations = 1 × 104, precision = 1 × 10−7, tolerance = 5 × 10−4% and
convergence = 1 × 10−9. Parameter constraints were also defined in
the Solver dialogue box to make sure that the estimated break-
points are all positive and are at progressively longer times. The
spreadsheet produces best-fit parameter values, SSE, AIC, 95% con-
fidence intervals of the parameters, Evidence Ratio, P values, and
R2 values for each linear segment.

All the calculations in this work have been performed by the
spreadsheet and also by the commercial software package NCSS.
The estimated values of the parameters obtained from the two soft-
ware packages were always identical within ±1 × 10−2% difference,
which can be attributed to minor differences in numerical calcula-
tions and rounding of numbers. This similarity in estimates shows
that the more familiar and easily accessibly ExcelTM spreadsheet is
accurate enough to obtain reliable parameter estimates.

3. Application to experimental data

Due to their lack of a statistical method to handle multin-
earity, most researchers avoid the analysis of the multi-linearity
in pore and film-diffusion plots. Some choose a few points and
draw one straight line to calculate a pore-diffusion coefficient and
ignore the remaining linear segments, while others fit a straight
line to the entire adsorption period and naturally obtain poor
fit to the data then conclude that pore diffusion does not con-
trol the rate of adsorption. Only a few published research articles
acknowledge the presence of several segments and deal with these
segments by the graphical analysis outlined above to study the
variation of intraparticle-diffusion parameter as the adsorption
progresses towards equilibrium. Among the authors who apply
the graphical method to analyze multi-linearity in their articles
are McKay [10], Allen [1,18], Kumar [19] and their co-workers.
Their work is valuable because they have documented the tempo-
ral change of intraparticle-diffusion coefficient as adsorption takes
place in smaller pores, and also presented studies that correlate
the pore-diffusion coefficient with pore-size distribution and other
adsorption variables. It is attempted in the present study to apply
the statistical method, piecewise linear regression, to published
experimental results of Koumanova et al. [1]. These experimen-
tal results show the effect of particle size on the adsorption of
p-chlorophenol onto activated carbon. The following paragraphs
present the detailed analysis of one adsorption data set (particle
size 1000–1600 �m) to demonstrate the sequence of calculations
and to present the recommended procedure. The final results for
all particle sizes are presented to show the differences in esti-
mates between the statistical and the graphical methods, and also
to demonstrate how the statistical analysis provides deeper insight
into the process and potentially provide more conclusions.

3.1. Applying PLR to Boyd’s plot
3.1.1. General considerations
The statistical analysis is started by applying Boyd’s model to

the experimental results of the initial period of adsorption. The val-
ues of q at different times are entered in the Data Input worksheet,
where time0.5 values are automatically calculated. These values are
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Table 1
Results of piecewise linear regression for the first two linear segments in the Boyd plots for different particle size of adsorbent. The values in parentheses are 95% confidence
limits (Di: cm2/min; t1: min).

Particle size Slope 1 Intercept 1 t1 Slope 2 Intercept 2

1000–1600 �m 0.00416 (0.00306–0.00525) −0.0260 (−0.00420 to −0.0478) <37.9 0.00841 (0.00504–0.0118) −0.184 (−0.548 to 0.185)a
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value is 0.024 which is smaller than the accepted 0.05 significance
level, and indicates that the complex model (L-L-L-L) fits the data
significantly better than the simpler model (L-L-L). Therefore, it is
decided to accept the model with four linear segments as the correct
model. The shape of the data points’ trend does not suggest more
1600–2000 �m 0.00229 (0.00192–0.00266) −0.0106 (−0.0182 to −0
2000–2500 �m 0.00185 (0.00067–0.00302) −0.0170 (−0.439 to 0.0

a The intercepts of the two linear segments at 1000–1600 �m are significantly di

opied automatically to the Film Diffusion worksheet where values
f Bt are calculated from Eqs. (2) and (3) based on qe value sup-
lied by the user. It should be noted here that because Bt values are
alculated from ln(1 − F(t)), they become notoriously sensitive to
hanges in q when qe is approached. For example, if a small experi-
ental error in q (1%) changes the value of F(t) from 0.95 to 0.9595,

he value of Bt changes by 8.4% from 2.498 to 2.708. The same effect
s even more exaggerated at higher values of F(t). Therefore, it is not
ecommended to extend the Boyd plot to times close to equilibrium.
his is done in the Film Diffusion worksheet by deleting the data cor-
esponding to high Bt values. In the present study Bt values larger
han 1.2 were not included in the calculations. It should be empha-
ized that the value of 1.2 is not a threshold or critical value, it is
ust a reasonable value chosen by the authors that include sufficient
ata to represent the first two segments. Also, in many kinetic stud-

es the adsorption experiments are not extended long enough to
each equilibrium and therefore the value of qe may not be known.
t is possible in such cases to use an estimate of qe obtained from
tting the data to pseudo kinetic models. It was found by many
rials in the present study that the intercept of the first linear seg-

ent in the Boyd film-diffusion plot is not sensitive to changes
n qe, but the slopes and the breakpoint of the multi-linear Boyd
lot change significantly with change of qe. Therefore, if the value
f qe is not known with certainty then the Boyd plot can only be
sed to estimate the intercept (which tells if this time period is
ontrolled by film diffusion or not) but cannot be used to obtain
ccurate estimates of both the slope (needed to calculate the dif-
usion coefficient) and the time corresponding to the breakpoint.
nother decision is in order here regarding whether to include the
oint (time = 0, q = 0) or not. It is recommended to exclude this point
ecause at the very beginning of adsorption what really takes place

s the liquid filling the pores and wetting the outer and inner sur-
aces, this is neither film nor pore diffusion, and therefore, if this
oint is included it will result in a biased estimate of the inter-
ept and consequently may result in a wrong conclusion about the
echanism taking place.

.1.2. PLR results
By applying this treatment to the experimental data of

oumanova et al. [1] for particle size 1000–1600 �m it was found
hat the intercept of the first linear segment in the Boyd plot
s −0.0260 with 95% confidence limits of (−0.0042 to −0.0478).
his value of the intercept is significantly different from zero, and
his strongly suggests that film diffusion is the rate controlling

echanism during the first 38.2 min of adsorption. This is further
orroborated by the low R2 value of this segment (0.965) and also
y the obvious nonlinearity of the points in the first segment in the
lot. It should be remembered that the time value at the breakpoint

s not reliable because of the absence of an accurate value of qe for
his system. The results of applying SLR to Boyd plots of all particle
izes of the adsorbent are presented in Table 1 and the plots of the
rst two linear segments are shown in Fig. 1.
.2. Applying PLR to Weber’s plot

The next step is to apply Weber’s pore-diffusion model to the
ame set of experimental data. The sequence of calculations is illus-
5) <53.1 0.00590 (0.00480–0.00699) −0.202 (−0.341 to 0.0631)
<51.5 0.00484 (0.00413–0.00555) −0.171 (−0.656 to −0.277)

t at 92% level.

trated in the flow sheet in Fig. 2. The values of q at different times are
automatically copied to worksheets that perform piecewise linear
regression based on the assumption of 2, 3, and 4 linear segments,
these worksheets are named L-L, L-L-L, and L-L-L-L, consecutively.
The user then switches to these worksheets, enters initial estimates
for the regression parameters, and consequently reaches the best
fit for each case. A decision about the number of linear segments is
reached by means of the Evidence Ratio and F ratio calculated by the
worksheets. For the particle size 1000–1600 �m, the AIC values for
L-L and L-L-L are −12.8 and −26.4. This large difference means that
three linear segments is much more likely to be the correct model
than two linear segments, and the evidence ratio of 883 means that
L-L-L is 883 times more likely to be the correct model than L-L. The
same conclusion is also reached from the P value that is calculated
from the F ratio, the value of P = 3.4 × 10−5 is much smaller than
the usually accepted 0.05 significance level. In other words, there
is only a 0.0034% probability of observing the current F ratio if the
L-L model is in fact correct. Therefore, it is concluded that three
linear segments is statistically a better fit than 2 linear segments.

By applying a similar comparison between three and four lin-
ear segments, it was found that AIC values for L-L-L and L-L-L-L
are −26.4 and −23.5 which suggests that L-L-L is more likely to
be the correct model, but the corresponding evidence ratio of 4.13
means that L-L-L is only 4.13 times more likely, which is not con-
sidered overwhelming evidence in favor of L-L-L model [17]. The P
Fig. 1. Boyd plots for the initial period of adsorption of p-chlorophenol onto acti-
vated carbon of different particle sizes.
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[20]. As the particle size decreases, more closed pores are trans-
formed to blind pores and become accessible for adsorption, thus
changing the size distribution of accessible pores. Another possible
explanation is that the presence of gaps (regions without experi-
Fig. 2. Flow sheet illustrating the steps of calculatio

han four segments, accordingly, more complex models were not
ested.

By observing the results of fitting four linear segments to the
ore-diffusion model for the experimental results of particle size
000–1600 �m shown in Table 2, it is seen that the intercept of the
rst linear segment is −3.561 with 95% confidence limits of (−4.220
o −2.903) which is significantly different from zero, and since the
ame linear segment has an intercept of −0.0260 in the Boyd plot, it
s concluded that the rate in this initial period of adsorption is con-
rolled by film diffusion. The time corresponding to the end of the
rst linear segment, and consequently to the end of film diffusion, is
stimated from L-L-L-L to be 82.3 min which is quite different from
he value of 37.9 min estimated from the regression of Boyd’s plot.
owever, the break point estimated from Boyd’s plot is not reli-
ble in our specific case as discussed above, and therefore, a value
f 82.3 min is accepted for the breakpoint and will be used in the
iscussion that follows.

Fig. 3 and Table 2 show the intraparticle-diffusion plots for
ifferent adsorbent particle sizes. It is seen that the adsorption
egins with a period of fast film diffusion, followed by slower
eriods of intraparticle diffusion as the system approaches equi-

ibrium. One major difference between the plots in Fig. 3 and the
ame plots obtained by graphical analysis done by Koumanova
t al. is that according to the statistical analysis there is strong

vidence for the presence of four linear segments in case of par-
icle size 1000–1600 �m, while the graphical analysis produced
nly three segments. It is also noticed that the statistical analy-
is only yields three linear segments for particle sizes 1600–2000
nd 2000–2500 �m. This may possibly be explained as follows: the
hoose the number of linear segments in the model.

inside surface area of a porous medium is the sum of the pore sur-
faces of three different kinds of pores that exist in the material. The
through pores extend from one end to the other, the blind pores
end inside the material, and the closed pores are not accessible
Fig. 3. Intraparticle-diffusion plots adsorption of p-chlorophenol onto activated
carbon of different particle sizes.
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Fig. 4. The variation of q1, the p-chlorophenol uptake on the outside surface of
carbon, with the outside surface area of carbon (assuming spherical shape).

mental data) in the cases of 1500–2000 and 2000–2500 �m sizes
is responsible for missing a breakpoint that occurs in one of these
gaps. Experimental evidence is needed to back the correct expla-
nation. This evidence would be the pore-size distribution for each
size fraction and also more kinetic data points.

Table 2 also presents ki values for different intraparticle-
diffusion regimes and also ti, the breakpoints or the times of
transition between diffusion regimes. It is observed that some of the
values obtained in the present study are similar to those obtained
by the graphical analysis done by Koumanova et al. [1], while other
values are very different. Although these differences may seem
unimportant, it will be shown in the following discussion that they
have a significant impact on the conclusions about the mechanism
taking place in this adsorption system.

To our best knowledge, adsorption research until now does not
pay attention to the times of transition between consecutive dif-
fusion regimes, nor to the significance of q1, the dye uptake at the
time of transition from film to intraparticle-diffusion control. Fig. 4
shows the relationship between q1, the dye uptake supposed to take
place by film diffusion, and the outer surface area of the adsorbent
(assuming spherical shape). It is seen in the figure that the values

of q1 estimated by the graphical method has no apparent trend,
while q1 estimated in the present study has an almost linear rela-
tionship with the outside surface area and this corroborates the
assumption that the amount q1 is adsorbed on the outer surface.

Fig. 5. The variation of the fraction of p-chlorophenol uptake inside the pores of
carbon with the particle radius.
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nother way of utilizing q1 values is shown in Fig. 5, where the
raction adsorbed in the pores (qe − q1)/qe is plotted against the
article radius. A linear relation is obtained that is in agreement
ith the known phenomena of increasing available pore surface
ith the decrease in particle size. This kind of analysis, presented

n Figs. 4 and 5, reveals interesting relations between breakpoints
nd variables of the adsorption system. The present study does not
uggest any new theories, it only highlights new possibilities for
nalyzing adsorption data. If similar analysis is routinely carried
ut by researchers, the results may possibly lead to better insight
nto the mechanism of adsorption.

. Conclusions

The reduction of subjectivity in scientific research is necessary,
o matter what discipline. The method of PLR has been presented as
complement to the traditional graphical method for the analysis
f multi-linear intraparticle-diffusion plots. It has been demon-
trated in the present work that the calculations are practically
traightforward, and thanks to the abundance of computers and
oftware, little training is needed to master this method.

The breakpoints are assumed to represent transition between
iffusion regimes. Until now, they were not utilized in interpreting
xperimental results, probably due to the ambiguity in determining
heir values by the graphical method. The present study shows that
he breakpoint values estimated by PLR, being obtained by sound
tatistical methods, open new prospects in the interpretation of
inetic adsorption data.

The reliability of the PLR analysis can be enhanced by the exper-
mental design of the kinetic study. First, it would be beneficial to
ave as many kinetic data points as possible, this would ensure
aving a reasonable number of points in each segment and thus
btaining statistically significant estimates of the diffusion param-
ters. And secondly, a data set with no gaps (blank regions with
o observations) would help in determining the location of break-
oints with more accuracy.
ppendix A. Supplementary data
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he online version, at doi:10.1016/j.cej.2010.07.059.
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